Lịch sử Tiếp_tuyến

Euclid vài lần nói đến tiếp tuyến (ἐφαπτομένη) của một đường tròn trong quyển III của Elements (khoảng 300 TCN).[2] Trong tác phẩm Conics (khoảng năm 225 TCN), Apollonius định nghĩa một đường tiếp tuyến như một đường thẳng sao cho không có đường thẳng nào khác có thể đứng giữa nó và đường cong.[3]

Archimedes (khoảng 287 - 212 TCN) đã tìm ra tiếp tuyến với đường xoắn ốc Archimedes bằng cách xem xét đường đi của một điểm di chuyển dọc theo đường cong[3].

Trong thập niên 1630 Fermat phát triển kỹ thuật adequality để tính tiếp tuyến và các vấn đề khác trong vi phân và sử dụng cách tính này để tính toán tiếp tuyến cho hình parabol. Kỹ thuật adequality tương tự như tính sự khác biệt giữa f ( x + h ) {\displaystyle f(x+h)} và f ( x ) {\displaystyle f(x)} và chia nó cho h {\displaystyle h} . Độc lập với Fermat, Descartes cũng sử dụng phương pháp chuẩn hóa dựa trên quan sát rằng bán kính của một vòng tròn luôn luôn chuẩn hóa với đường tròn.[4]

Những phương pháp này dẫn đến sự phát triển của vi phân trong thế kỷ 17. Nhiều người đã đóng góp, và Roberval phát hiện ra một phương pháp tổng quát cho việc vẽ tiếp tuyến, bằng cách xem xét một đường cong như một điểm di chuyển mà chuyển động của nó là kết quả của một số chuyển động đơn giản[5]. René-François de SluseJohannes Hudde đã tìm ra thuật toán đại số để tìm ra các đường tiếp tuyến.[6] Những phát triển sau đó bao gồm những thành tựu của John WallisIsaac Barrow, đã dẫn đến lý thuyết của Isaac NewtonGottfried Leibniz.

Một định nghĩa năm 1828 của tiếp tuyến là "đường thẳng chạm vào đường cong, nhưng không cắt nó".[7] Định nghĩa cũ này làm cho điểm uốn của đường cong không có tiếp tuyến. Định nghĩa này đã bị loại bỏ và định nghĩa hiện đại tương đương với định nghĩa của Leibniz, người đã xác định tiếp tuyến như một đường thẳng nối một cặp điểm gần nhau vô hạn trên đường cong.